

Networkshop

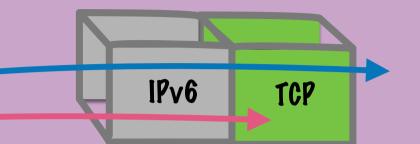
What should a campus network do with IPv6 extension headers?

Professor Gorry Fairhurst, School of Engineering, University of Aberdeen

IPv6

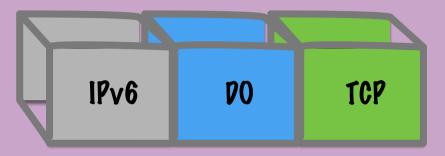
IPv6 was standardised in the 1990's [RFC2474]

Full Standard in 2017 [RFC 8200]


Base Header	Version DSCP/ToS ECN Flow Label					
Base fielder	Payload	l Length	Next Header	Hop Limit		
	128 bit Source Address					
	128 bit Destination Address					
Extension Header (EH)	Next Header	Header Length				
>90% of BskyB!	Header Extensions (if any)					

On average, IPv6 represents a third of BT's broadband traffic flows

- Tom Hill, 24th April 2023, IPv6 Council

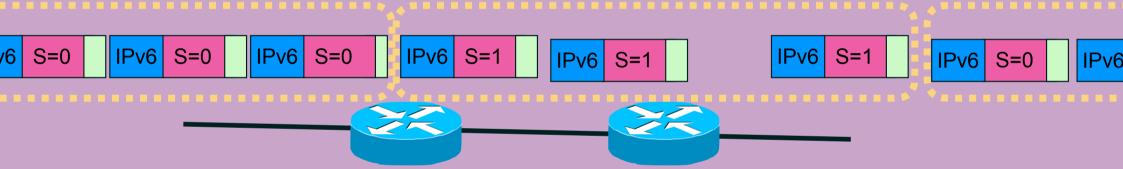

IPv6 Extension Headers

	Protocol	Description	References
	0	IPv6 Hop-by-Hop (HbH) Header	[RFC8200]
	43	IPv6 Routing Header	[RFC8200] [RFC5095]
	44	IPv6 Fragment Header	[RFC8200]
	50	IPSEC Encapsulating Security Payload	[RFC4303]
	51	IPSEC Authentication Header	[RFC4302]
	60	IPv6 Destination Options (DO)	[RFC8200]
	135	IPv6 Mobility Header	[RFC6275]
	139	Host Identity Protocol (HIP)	[RFC7401]
	140	Shim6 Protocol	[RFC5533]
	253,254	Use for experimentation and testing	[RFC3692] [RFC4727]

https://www.iana.org/assignments/ipv6-parameters/ipv6-parameters.xhtml

Renewed Interest in Options using IPv6 Extension Headers

- IPv6 Segment Routing Option (SRv6) [RFC8986]
- Service Management and Performance Measurement using PDM [RFC8250]
- In-situ Operations, Administration, and Maintenance (IOAM) [RFC9268]
- AltMark Measurement DO and HbH Options [RFC9343]
- minPMTU HBH Option [RFC9268]
- ---- More capable ASICs are emerging that can process EHs at line speed

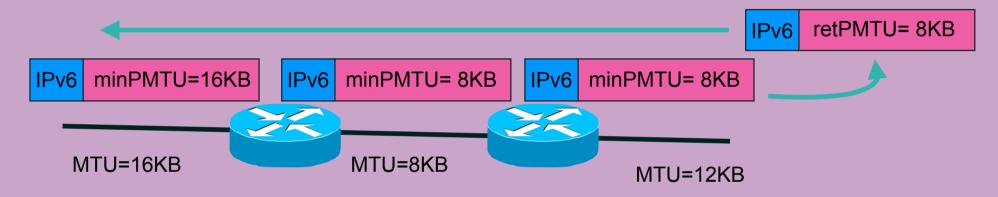


Example: Using ALTMARK to Measure a Path [RFC9343]

Enable ALTMARK for a connection

Send packets including the ALTMARK Option (DO or HBH)

The sender flips S in the option every (configured) batch of packets



Receiver measures loss/reordering by counting packets in batches Measures RTT, Jitter, etc by observing S mark edges

Example: Using minPMTU Option [RFC9268]

Occasionally send a probe packet including the *minPMTU HbH Option* Each router reduces the minPMTU size in the packet, if needed

Receiver returns the minimum collected size for the path

Sender then tests if the suggested size works

Significantly reduces number of tries to determine a suitable packet size

What happens to a Packet that includes an EH?

Survival of Extension Headers with Destination and Hop-by-Hop Options

		DO	HbH	
RFC 7872 (2016) [1]	Core to DNS Server	80-90%	45-60%	
Our (2018) data [2]	Core to Web Server	70-75%	15-20%	
JAMES (2022) [3]	Core to Core	94-97%	8-9%	
[1] RFC 7872 [2] A Custura, 6MAN WG, IETF 109 [3] https://datatracker.ietf.org/doc/draft-vyncke-v6ops-james/ Some places they are forwarded, some they are not! what about the edge?				

What happens to a Packet that include an EH?

Measurement at the Edge	DO	
	~92%	UDP
5000 probes	~68%	TCP
Edge networks	HbH	
	~11%	UDP
Test to a server in JANET supporting EH, 8B PadN option ~5500 IPv6-enabled ATLAS probes in RIPE, globally distributed	~9%	TCP

.. less support in Access Networks

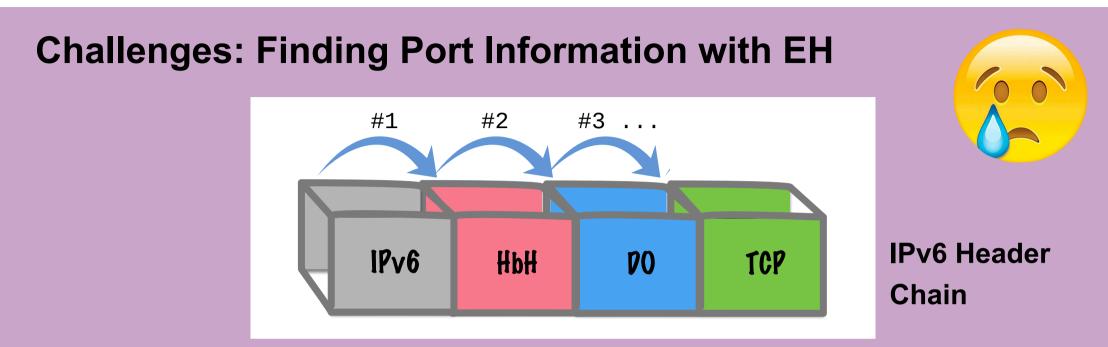
Challenges: Security Issues

1. Slow-path processing of EHs

Does the router "melt" under the load of processing a large EH?

- Protect with an ACL*

2. Processing of a malformed EH?


Does the router "melt" when processing a complex EH?

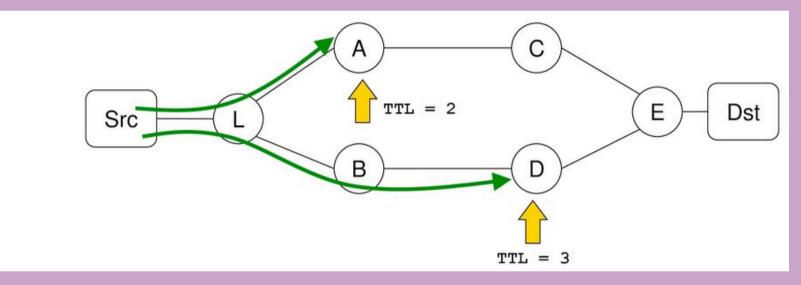
- Protect with an ACL*

* Access Control List for packets forwarded to the control plane

Practical Router Limitations [RF7872] (2021)

Firewalls, IDS, Load balancers sometimes like to find ports

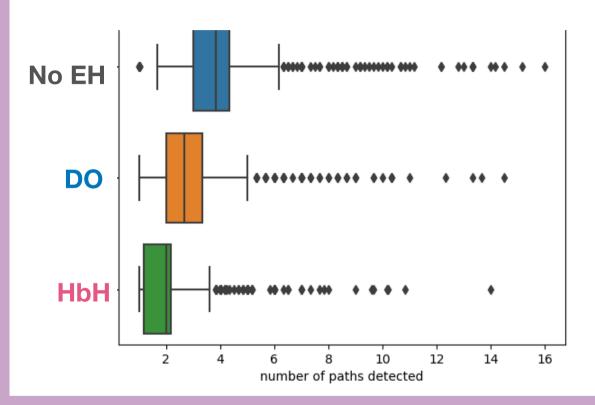
- For EH, this requires traversing the Extension Header chain


Routers using ECMP* can be configured to use port entropy and/or flow label

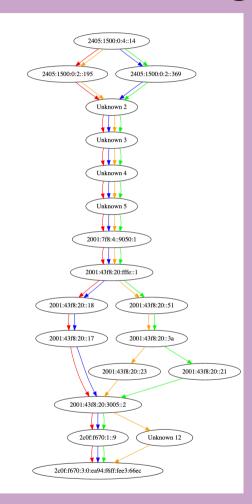
- Some do a deep-dive into the packet to find the ports *ECMP = equal cost multi path routing

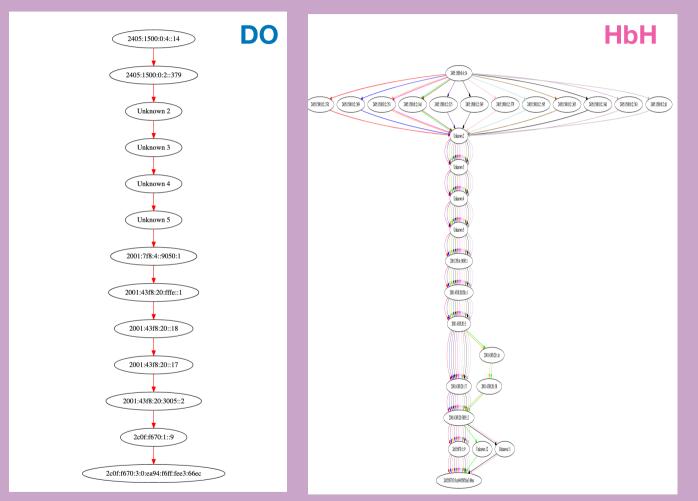
Equal Cost Multipath Routing (ECMP)

A balancer, L, chooses a path (e.g., based on flow entropy) With ECMP there are multiple paths after L to the same Dst

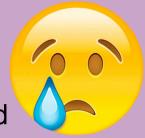


Results: Equal Cost Multipath Routing (ECMP)


Paris TraceRoute* sends test packets with differing ports, flow label, etc.


Number of paths reduces using EH, could be better using the flow label?

*Avoiding traceroute anomalies with Paris traceroute, Augustin et al, IMC, 2006


Fun Results using 16 Paris TraceRoute IDs

Jisc

So... Can we use IPv6 EH?

DON'T expect EH to work **everywhere**, the packets *might* be dropped DON'T rely on every router looking at every EH, but they might!

IPv6 can be extended - this is already happening within domains... Usability of EH across the network will depend on the path being used... Newer hardware will make this easier!

Developers already know how to make protocols work... ... **Race** multiple headers and find out what a path supports

So... what happens across JANET?

		No EH		DO	DO	HBH	HBH +DO
Source	Site	UDP	TCP	UDP	ТСР	UDP	UDP
2001:630:3c:f804::a	Jisc Technologies: Security Development						
2a0c:5bc0:40:78c:ee 08:6bff:fe73:40b6	Imperial College of Science Technology and Medicine						
2001:630:42:110:da 58:d7ff:fe03:469	University of Aberdeen						
2001:630:21:8d80:c 24a:ff:fe09:4726	University of Liverpool						
2001:630:22:d0ff:c2 4a:ff:fe09:49f4	University of Manchester					X	X
2001:630:206:e:a2f3 :c1ff:fec4:5971	Sanger Institute		X		X	X	X
2001:630:61:40e2:c 24a:ff:fecc:73a4	University of York		X		X	X	X
2001:630:340:21::99	University of Kent		X		X		

Test from RIPE ATLAS Probes to University of Aberdeen

Conclusions

What should campus networks do with IPv6 Extension Headers?

We might need to protect the router control plane

Ensure routers do not drop packets solely because they include an EH

- ... Newer hardware will make this easier!
- ... We can then deploy **new options**

Watch out for new uses of IPv6 Extension Headers!

Thank you

Gorry Fairhurst

Ana Custura

{gorry,ana}@erg.abdn.ac.uk

University of Aberdeen

help@jisc.ac.uk

<u>isc.ac.uk</u>

Networkshop

Digging deeper, current IETF work:

draft-ietf-6man-hbh-processing draft-ietf-6man-eh-limits draft-ietf-v6ops-hbh Internet Measurements, IEPG, IETF-116 A Custura, RIPE86 NCC, May 2023

