EG3576

COMMUNICATIONS ENGINEERING |
- COMMUNICATIONS FOR CONTROL

SCHOQLOF:
UNIVERSITY+

HTTP://WWW.ERG.ABDN.AC.UK/~GORRY/EG3576/

CAN-RDM V10, 2025

Before RDM, any change to
a device meant actually
setting switches/controls
on the device itself.

Using RDM, devices can be
monitored and configuration
can be changed remotely
using the bus.

REM HISTCRS

Work started 2001, main spec 2010, updated 2023

Should the standard use two wires or four wires?

Soon after 2001 it was decided to use just two wires
Two-wire DMX cable was then common
It uses a half-duplex bus (one transmitter active at any time)

Each RDM device also has a Unique ID (not DMX address)

http://tsp.plasa.org/tsp/documents/docs/E | -20RDM_2006.pdf

DUPLEX
SERIAL
COMMUNICATIONS

WHAT IS RDM?

Remote Device Management

Allows bi-directional communication to/from a device using
the DMX cable.

This can be used to:
- Build a list of all devices on a DMX bus
- Set a device's DMX base address (which slots to read)
- Set a device's DMX channel profile (what slots do)
- Monitor the status or faults reported by a device

- Download an upgrade to the device firmware

REM PHYSICAL EAVELR

Out logic out
(RDM when
enabled)
line
logic in
An RDM device uses tri-state drivers e

direction control

- This uses Half Duplex
Each device controls the direction of transmission:
(a) The master normally sends; Others normally listen.
(b) These roles can be reversed to allow equipment to send.
(c) There can be moments where there is no sender.
(d) There may be transients when more than one device tries

to send (in half-duplex these result in signal corruption).

REMOTE DEVICE
MANAGEMENT (RDM)

RDM Standardised as E1.20 (2010)

- RDM physical layer

- Packet format for RDM and the UID
- Communicating with devices

- Discovering the UIDs of devices

- RDM repeaters

THE RDM PHYSICAL LAYER

RISEF DUPLEX OPERATNGES

There are two roles assumed to enable an equipment to send:

(1) One device is the master - usually the DMX sender.
The master controls who can transmit to the bus.

The master initiates a communications request to a "slave” by
addressing the unit and then setting the transceiver to receive.

(2) The master listens for a response (receive mode).

The slave receiver recognises a control slot.

If the slot addresses the slave, it enables its own transmitter.
(3) Once data sent, the slave reverts back to receive mode.

Master resumes control after reception from slave (or a timeout).

RBM - HALF DUPEE?S

Normal DMX Data

RDM controller I

message

RDM response I

Idle I I -
Direction Forward ReV" Forward

of transmission

Time
RDM BUS TERMINATION

A classical DMX sender is conected at one end of the DMX cable
In RDM, any of the devices on the bus might send
The signal therefore travels in both directions along the cable

It is important to terminate BOTH ends of the cable with 120 Ohms

The two 120 Ohm terminators contribute together a 60 Ohm load.

THE PACKET FORMAT FOR RDM
AND THE UID

I I]

An RDM packet is sent in a DMX frame with:
Start Code (value OxCC, 204 decimal)
RDM Header (24 slots);
Message Length; Source; Dest.; Command; Param.; etc
RDM Data Area (variable)

Checksum (2 slots) - | 6-bit sum of all slot values

RDM - IDLE TIMES

Timing between master and slave can be slightly delayed
Therefore small idle periods where the bus “floats”.

Time before start of next regular
control frame sent by the master

%
11 .

Direction
of transmission

Forward ReV. Forward

Time

@ IFCUL ATINGFBIES

Two 120 Ohm terminators - a combined 60 Ohm load.
Each EIA-485 node has an input impedance of 12K.

32 nodes in parallel present load of 376 ohms.
Total load is therefore 51.8 ohms.

To maintain at least 245 mV between B & A line, needs a bias current of ~
4.7 mA to flow through this load.

A 5V supply needs a series resistance of 1063 Ohms, subtract 51.8
Ohms of bus loading, this leaves 1011 Ohms.

Placing half as a pull-up to 5V and half as a pull-down to ground gives a
bias of 505 Ohms, 510 Ohms to nearest preferred value.

IDENTIFYING RDM DEVICES

All RDM frames use a Start code of 0OxCC

“simple” devices already ignore non-zero start codes!

Each RDM device has a Unique ID (UID)
The UID is assigned by a manufacturer
This is not a DMX base address (position in the frame)

The UID is a globally unique identifier

INEIE CONTROLEEERS

When the line is idle, it “floats”

This makes a receiver vulnerable to noise

Instead, a bias network is added
Line A is connected via bias resistance to GND
Line B is connected via bias resistance to +5V
This ensures the line level > 245 mV

Of course, only provide bias once for each bus!

RDM BIAS

Driven Bus Idle biased Bus

(sender active) (no sender)

PR ot iy o e

REBM FARAMEPERS

Each device has:
A UID (permanently set by the manufacturer)
Aflag to say whether the device is addressed

Aflag to say whether the device is muted (see later)

A set of parameters stored in an EEPROM data (non-volatile):
The device DMX base address
The current profile (mapping slots to parameters)
Other configuration parameters (defined by the profile)

Other status parameters (e.g., temperature, current, time used)

FEMUNIOUE S

All RDM equipment is uniquely identified:

Manufacturers assign a unique 6 byte UID

FFFF: FFFF FFFF (Broadcast)

A 2B Manufacturer ID is assigned to each manufacturer

UID = 2B Manufacturer ID + 4B Serial Number (Flat address)

RDM CHECKSUM

- Sender:

- Calculates the unsigned, modulo 0x10000, 16-bit additive
checksum of the entire packet slot data (from START Code
to end of frame)

- Places result in the Checksum field of the frame

 Receiver:

REM PACKET FORKMZN

DSO0-X 20248, MY54430365: Mon Feb 01 15:36:01 2016
1 2

Lo

2B Manufacturer ID: FFFF FFFF (All manufacturer systems)

PN g o N i e R g BN

+ Calculates the unsigned, modulo 0x10000, 16-bit additive

checksum of the entire packet slot data (from START Code to B
: end of frame)
DMX base address can be changed depending on the use
+ Compares result with the Checksum field of the frame
The ID is not the DMX base address P . Decode
+ Only if h f is OK, otherwise fi is di tart
An RDM Device is addressed irrespective of DMX address Rl e match frame is OK, otherwise frame (s RN, RDM Header (24 slots), RDM Data, and Checksum

Code SC_RDM 0xCC

COMMUNICATING WITH RDM

DEVICES RDM COMMANDS

RDM devices do not respond to commands unless addressed

MASTER MUST KNOW UIDS

The master needs to know the UID of each receiver

They do read DMX data sent with a start code of 0x00 .
Important to address each device

Important to know what equipment is on the bus.
To communicate with a specific device using RDM:
i.e. parameters need to be interpreted in context.
1. Address the device using the UID (“Listen" sent to the UID)

I |
2. Write (set) or read (get) information stored in the set of parameters Key oo E how to find out what is connected!

s : ©

3. Then the device is released (“Quiet”) @?’c’
q0!

5O

g

CONFIG DMX ADDRESS

B
T -
SET DMX_START_ADDRESS 16

SET_Command_Response uID
(DMX-start-address,
<base address>)

RBDMIGET START ADDRESS EEM SET START ADDRESS

Listen (UID) Listen (UID)

SET_Command
(DMX-start-address,

<base address>) \

GET_Command
(DMX-start-address)

Response from RDM device ...
GET_Command_Response

DMX-start-address,
<base addreses>)

address now set to 16

Quiet Quiet

~
\
PR
B,

Reliability requires checking address was set correctly

REM GET SENSORVAESS

LISTEN <uid>
GET_Command \
(sensor) \
GET_Command_Response
/ (sensor, sensor-values)
QUIET \

REMTMASTHER

The RDM master (controller)
Needs to find a list of the devices that respond to RDM
Discovery is used to ask devices to respond

Devices respond to discovery messages by sending their UID

REM - UID DISCOVERSS

Master discovers UID of each device on network.
Starts with DISC_UNMUTE FFFF: FFFF FFFF
- Tells all muted devices to respond
- Master clears its list of responders
RDM discovers devices polling
DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- Tells all devices to respond: Range to respond

No response? ... then there are no responders.
One response ... we've found the only responder (add to list).

Collision ... there is more than one responder!

IEMING OF RESPONSES
Normal DMX Data [— e []

RDM controller [|

RDM response [|

Idle N I
Direction Forward B® rorward

of transmission

A “simple DMX” device ignores start code > zero

RDM takes time, this limits the maximum frame rate of sender.
Commands typically require only one receiver to respond
RDM not recommended during time critical communications

DISCOVERY - ONE DEVICE

DISCOVER

Discover_Response

\
/ (UID)

Once the UID is discovered the controller can address the device.

When more than one device responds, the Discover_response
will be corrupted by multiple devices sending at the same time!

RDM - UID DISCOVERS

RDM then starts a binary search
- divides the search space into two halves:
DISC_UNIQUE_BRANCH [0000: 0000 0000 - 7FFF: FFFF FFFF]
- Do these devices have the first bit unset?
No response? ... there are no responders in bottom half.
One response ... we've found a responder, add to list.
Tell responder to mute, and expand the search range.
Collision ... there is more than one responder:
divide the range by two and loop...
Repeat for other half of space:
DISC_UNIQUE_BRANCH [8000: 0000 0000 - FFFF: FFFF FFFF]

(247,481

REM DEVICE MUTE FiEAtE

Each RDM device has a MUTE Flag
The RDM bus controller can set or clear this MUTE Flag
DISC_UNMUTE (UID)
DISC_UNIQUE_BRANCH (UID-range)
Once set, the device does not respond to Discovery messages
This is used in the discovery algorithm in tow ways:
To resolve collisions (avoiding two replies at the same time)

To avoid discovered devices responding, once found.

REM DISCOVERM

" = =

Isolate parts of the tree using a Binary Search
Discovery finishes when there are no more devices to MUTE
At this stage, the master has a list of all device UIDs

BICCOVERY OF DEVICEE]N

B T UMUTE ALL: 7?72?27 ?
A

: ; ; DISC_UNIQUE_BRANCH ???? ?
Multiple response
DISC_UNIQUE_BRANCH 0??? ?
- 1 response, slot 1 = 00001
DISC_MUTE 0000 1
DISC_UNIQUE_BRANCH 1?2?27 ?

Multiple response
DISC_UNIQUE_BRANCH 10?? ?
1 response, slot 2 = 10011
DISC_MUTE 10011
DISC_UNIQUE_BRANCH 1??? ?
- 1 response slot 3 = 11000
DISC_MUTE 11000

???? ? - No response

All devices have been found!

Slot
uiD

. Muted
. Selected

DISCOVERING NEW DEVICES

The second part of incremental discovery is checks for new devices

Send DISC_UNMUTE FFFF: FFFF FFFF

Send DISC_MUTE each previously discovered slot in list

See if any new responders have appeared

i.e. DISC_UNIQUE_BRANCH [0000: 0000 0000 - FFFF: FFFF FFFF]

- After this, the RDM Master controller knows all devices on the bus

DISCOVERING CHANGES

After discovery the controller ought to know the UID of every device

It can then retrieve the DMX base address, equipment profile, and ar
other required parameters

What happens when a new RDM device is added to the bus?
....0r a discovered device its removed?

The RDM Master controller could use the discovery algorithm
... This can require many commands and take a long time

Instead, a RDM Master controller could be smarter
Incremental discovery uses the already discovered list of devices

E@55 OF COMMANES

What happens when a responder misses a command?

Missing a MUTE or UNMUTE breaks the protocol!

- it is helpful to repeat all critical commands

- also helps to add delay between repeated commands.

RDM COFFEE MAKER

Original DMX Mk 1
Doug Fleenor, 1996
Mk 2 used RDM 11

Address programmed remotely

Turn-on remotely
Could monitor coffee level :-)

Claimed: “3-week” training course eliminated !!!

SEECKING DISCOVEREDFEISHS
@FDEVIEE

First step: Check the list of responders in the list.
Send a command to each UID
If the device responds, then it is still there.
If it it does not respond, remove the UID from the list

BISCOVERY PROEBEER

The initial design had a problem:
The lights “flickered” in the first design.
... because more than one device could respond
... the collision signal could look like a start code of zero!
... other devices would read this as data
The solution came in two parts:

1) Do not send a Break/MAB for RDM responses, instead
respond using a special pre-amble sequence

2) Encode data so it is highly unlikely that a “combined”
signal is wrongly interpreted as actual data.

DM REPEATER (RECETS

Output DMX

port
Controller

port

Output
port

A DMX repeater is designed for a simplex link
All DMX frames originates at the control
The repeater/splitter copies the DMX frames to all the output ports

A DMX repeater will never repeat RDM responses from output ports
back to the controller

RIBMISPLIT TERS/REPEATESS

DMX

Output Responder
ort
i bt > control
logic to
enable
Input Command > responders
port [perie 4 to send to
Output Responder
port port

An RDM repeater/splitter needs to be different to support half-duplex.

The repeater/splitter configures the transceivers at the ports so a
responder can send a frame to the command port, when it needs to.

This frame only needs to be sent to the command port (i.e. master).
(A slave never needs to send frames to other slaves).

RDM REPEATER NETWORKS

RDM Repeaters need to support half-duplex
The processor inside a repeater needs to read the frames!
Overall network timing important for half duplex

No more than 4 repeaters in series (timing constraints)

Device

Device

Device
Controller .

-

Device

CAN

Battle Tank Controls Left
Architecture - Tracks

Speed, Supervisor Right
= Direction > . Tatks
|
. 3 - Azimuth
. - Turtet
Academy intormation Atiude
CANbus.
n - System e

MOTOROLS

Controller Area Network

G Fairhurst

DM REPEATERS DETEIE

Responder

Command
port

control
logic

Responder
port

Two types of port

Responder Ports receive commands, and transmit responses
towards controller

Command Ports sends commands and can receives responses

FERTHEIER DMX REABINS

“Control Freak - A real world guide to DMX-512 and Remote Device
Management”, Wayne Howell, 2010

"Recommended Practice for DMX 512:A Guide For users and Installers",Adam
Bennette, (PLASA) *

ANSI El.11, Asynchronous Serial Digital Data Transmission Standard for
Controlling Lighting Equipment and Accessories, USITT DMX512-A, American
National Standards Institute, 1990 (PLASA) *

ANSI E1.20, Remote Device Management, over USITT DMX 512 Networks,
2003 (PLASA) *

* Free download at tsp.plasa.org

POINT-TO-POINT WIRING

Traditional car wiring loom can be several
miles of cable!!

CAN

A bus significantly reduces cable & cost

afiji e

oo v
Trans-| | Active
mission| |Suspen

n

EBMREPEATERS DETAE

Responder
control
Command logic
port

Responder
port

All ports can be enabled to send or receive
Normally, the command port is in receive mode, other ports in send
When a signal is received on a responder port

A frame is received by the repeater on a responder port

The frame is repeated towards the master using the command port
The repeater returns the command port back to receive mode

SYNCHRONOUS
CONTROL

CAN BUS

ECU ECU ECU
Device Device Device
#1 #2 #n
CANH
< <
120Q s :: 120Q
CANL

120 Ohm shielded twisted pair cable
Specified as 108 - 132 Ohms
The conductors in the pair are labelled CANH and CANL
A shield reduces EMI

Bus terminated at each end with 120 Ohm resistor

@2 IN BUS LEN Gl

10 Bus lines
5001 assumed to be
2004 an electrical
medium
Bit Rate 100 (e.g.twisted
[kbps] 5 pair)
207
10+ |
, . \ \
0 10 40 100 200 1000 10,000

CAN Bus Length [m]

Maximum bus length is a function of bus speed
1 Mbps <= 40m
125 kbps <= 500m

AN CABLE VOLTAGESS.

1"_<

3 S
- SRV
s e
E . CANH ¢ az=orf |
g .. ¥ |, Y - == }
% _ Viinp) |e— it
3. . e
T_S CANL Vamm e
- I B e
> ?
L -
ar=on | ooer
#» Time, t in 5
Recessive Dominant | Recessive 1~
s
Logic H Logic L Logic H JCANL

b) Dominant State (TXD = LOW)

CAN SIGNAL

Two siinals on cable
« CAN_H 35V =i f /7
| >
//
wecay-— | \
2.5V
1.5V
0 0.1 0.2 0.3 0.4 0.5 0.6
Value 0 0 | | 0 | | I o

CAN TRANSMISSION

T
T
[CANH
Microcontroller
with CAN CAN
Controller Transceiver
RXD
om
come | TXD canL
S T Lol S < Complementary Diflerential Signals

Max | Mbps data transmission
(CAN-FD is compatible and works at 5 Mbps)

TI SNXS5HVD25 [INDUSTRIAL
CAN BUS TRANSCEIVER

Ve 3)
g i
Sensor SLOPE
DE CONTROL and E] Rs
MODE LOGIC Vec &)
GND 2| 7 |cANH
Vee[3] 6 Jcant
R4 5 | Veer
H KI DLC ﬂ Bkl
6| canip 11-BIT Z[4[5|4-BIT| | DATABYTE1 | CRC15-(15+S) BITS 5 B| eoF 7-BrTs [ERE
Header Trailer

There is no bus master

All frames have a format defined by the header
Each frame may carry some data

Each frame ends with a common trailer

CAN TRANSCEIVER

CAN transceivers use Open-Collector (O/C) logic to connect to the bus
Logic | (recessive): No signal sent
+ Output at CAN_L floats to 2.5V
+ Output at CAN_H floats to 2.5V

* i.e.there is a no voltage difference between the conductors

Logic 0 (dominant): Forces bus to a zero level
+ Output at CAN_L driven to 1.5V
+ Output at CAN_H driven to 3.5V

* i.e.there is a 2V voltage difference between the conductors

A receiver detects a 0 when CAN_H-CAN_L > 0.9V

BIFFEREN TIAL RECERTHEES

Noise

L

Received signal (CAN_H) - (CAN_L)
2V

T — 13
0

0 0 | 0 | |

CAN ID

Every frame has a CAN_ID - this is NOT an address.

CAN_IDs are unique (centrally assigned in a network), lowest has highest priority
Nodes can send any CAN_ID, but usually use one CAN_ID for each event

5
Bk
52

%] CANID 11-BIT §I§I§ 4- B]TH DATA BYTE 1

4 4

1'1-bit ID IDE flag indicates if |8 more address bits directly follow the IDE
If IDE = 0, the CAN-ID is | | bits (CAN 2.0A)

e
CRC15-(15+5) BITS | EoF 7-BITS

If IDE = |, the CAN-ID are 29 bits (CAN 2.0B - with |8 bit extension)

et o o |

& N FRAME FORZEN

e
e [2

DLC
4-BIT| | DATA BYTE 1

E| CANID 11-BIT

2

CRC15-(15+S) BITS

Data 0-8 bytes (0-64b), sent msb first
DLC = Data Length Code 0-8 bytes

+ Start of Frame (Ib) = 0 - This is a dominant bit!
« Control fields (3b) {RTR; ID (long of short); Reserved/FDF}

- Data (0-64b)

+ ACK field (2b)
* End of Frame Delimiter (7b) = |

END OF FRAME

Valid frames finish with a series of seven recessive bits, i.e. "idle"

Followed by a 3-bit inter-frame space

Senders monitor the bus while transmitting...
CRC, DEL,ACK, EOF all need to be seen correctly
Otherwise the frame is in error
An ERROR FRAME is sent to force all nodes to see the fault

This typically causes the frame to be resent

E

R , [oLe 3
M CANID 11-BIT s[5 “'B”H DATABYTE1 | CRC15-(15+S) BITS €| eoF 7-BITS

L
™2

2
&

Caterpillar
Adem Il engine control

3 separate CAN busses

CAN FRAMES

DS0X1204G, CNB3327237: Sat Mar 02 01:19.04 2024
T ! 9

Type DLC Data CRC
03 F5 00 00 00 00 2E
00 00 03
00 00 03
FE DE 03
FE E1 03 E8 23 28 00

Data:03 F5 00 00 00 00 2E B3

4 CAN FRAME TYPES

A
Elgls CRC15-(15+S) BITS 25| eor 7-8rTs

R pLC
5| canD 11-BIT 4-BIT| | DATA BYTE 1

™ML
™2
™3

+ DATA - Broadcasts data to the bus (most common)
+ REMOTE - Request data from a node (see later)
+ ERROR FRAME - Reports an error by a node

+ OVERLOAD FRAME - Flow control to delay transmission

CAN APPLICATIONS

+ 1983 Original application was for car electrical systems (Robert Bosch)
+ 1987 First CAN controllers by Intel and Philips

- 1993 1SO 1198

+ 1995 Standards developed from CAN: CANopen; DeviceNet;J.1939

History

Orriginal applications (~85% market)

« Cars, trucks, agricultural equipment, etc

Other applications (~15% market)

« Trains, Planes (non safety-critical - e.g. aircon)
+ Medical equipment, (XRay, CAT scanners, etc)
* Building automation (e.g. lifts), Office automation

* Household appliances (including coffee makers), Stage control (Chillinet)

« Military vehicles, MILCAM (combines CANopen & J.1939)

GF GF 208 Mool
AM3X 84MHz ARM] =l i %
- ARM CORTEX M3 Processor == CHUIH] [F=5nny
- 2xCAN208, L1 ‘
Tos T v Jrme] oo | ot

@& NACKFEE

Senders monitor the bus while transmitting...
The sender sends the ACK field (as recessive) at the end of each frame

- When a receiver sees the end of the message, it sets the ACK bit to dominant
The sender now knows that message has actually been sent by the bus

- If the sender does not see this bit set, it knows there was an "ACK ERROR"!

™ e pLC 2 = |
E| CANID 11-BIT Elsls “'B”ﬂ DATA BYTE 1 G| eoF 7-BITs [EE 2

CRC15-(15+5) BITS |§

ACKD = |

EVERY WORKING BUS >= 2 NODES!

WERTEL ECTRICAL SYSTRE

Car electrical system components:

Bedierne produce and/or consume

Engine Control Units (ECUs)
Anti-lock Braking System (ABS)
Active Suspension

o produce
+ Transmission Control
* Lighting WoroRo
* AirCon consume

AirBags
Power Windows; Power seats; Power Locks; etc

Each component can produce and/or consume CAN frames

EMBEEDDED @AM

C167CR Block Diagram

CPU

o ‘ Interrupt Controller 3506 10

nemptus

10/100 Mbps Ethernet, USB 2.0, 12C, UARTs

wl v B o)

CAN controllers integrated in a range of microcontrollers (ECU)

103 1/O pins

- usually use an external transceiver
- Arduini R4 supports CAN

USING CAN FRAMES

CAN Bus
—
8
switches
input module output module

The CAN ID identifies the message/event
It is not the address of a sender or the receiver

An input module produces CAN frames
An ID is assigned to each event
An output module consumes one or more CAN frames

For each configured ID sets an appropriate output

REEEVING DATA FRAMES

Any node can receive any data (event)

Data Frame; Identifier 'oil_tmp';

Nodes simply select which messages are of interest and receive them

BIT STUFFING

CAN bus uses synchronous transmission
There are no start and stop bauds to frame each byte (e.g., slots in DMX)

Receivers synchronise to the frequency and phase of the clock
- Data is delayed by propagation, so each receiver sees a slightly different signal
- Receive clock adapted by watching the time of bit transitions in the frame

There is a transparency problem when sending the same level for many bit periods
- There would be no timing at the receiver to discover sample time for bauds
- CAN uses bit stuffing to prevent this

ARDUINO CAN SHIELD

CAN interface
(DB-sub9)

USB interface

Microchip MCP2515 CAN controller
Microchip MCP2551 CAN transceiver
EM406 GPS Interface (asynchronous serial)

@\ FRAME PROCESSIING

‘ ﬁ Frames sent with an ID
Sonderitondod Recipent
R —

0 B ‘ ﬁ Frames propagate to all nodes
Senderinended Recipent

—_—

=] ﬁ' Nodes sees all frames
Sender Intended Recipient

‘ ﬁ Nodes filter only wanted set of IDs
Senderintendod Recipent

Some frames are of interest to no nodes at all!

The same frames could be of interest to more than one node

BIT STUFFING

Senders and receivers count runs of bits sent at the same level

A sender that sends 5 bits of same polarity, inserts one stuffing bit (of the
opposite polarity) before sending the next bit.

These bits are not part of message.
Does not apply to CRC or ACK fields

A receiver that receives 5 bits of same polarity, deletes the following bit:
The removed stuffing bit must be the opposite polarity (or a STUFF ERROR)

Note this happens automatically and ensures receivers always see transitions

& N\'IN AEROSPACE/SEA s

ATmegaS64M| 8-bit megaAVR® MCU
+ Operating temperature -55° C to +125° C
+ Supports CAN 2.0
+ 8-bit UART & SPI
+ |1 Channels ADC

Package

« Plastic aerospace applications
+ Ceramic radiation-tolerant for space applications
+ Same pinout as automotive-qualified AVR

REMOTE FRAME

How hot is the oil ?

Remote Frame; Identifier "oil_tmp'

Data Frame; Identifier 'oil_tmp';
contains desired information

Remote Frames are sent in two stages:
* Remote Frame sent to ask for a data frame

- Data Frame is sent to the CAN bus

BIT STUFFING ||

Examples - can you encode these using bit-stuffing?
+ Original data:1010101001
* sent on cable as 1010101001, received as 1010101001 (not stuffed)
* Original data: 101000000
* sent on cable as 10100000 (1) OI, received as 101000000 |
+ Original data: 101000001 I |
* sent on cable as 10100000 (I) |11, received as 101000001 | |

Examples - can you decode these using bit-stuffing?
* Senton cable as 10101111101
* This was stuffed as 101011 111(0) I, received as 1010111111
*+ Senton cableas 10101111111
* This was stuffed as 10101 [I 1 1 (1) |, this is a stuffing error
* Sent on cable as 10101101101
« This was not stuffed, received as 10101101101

MAXIMUM LENGTH

The size of a CAN frame is:
+ 44 (header size) + 8n (n bytes of payload data)
Bit-stuffing can increase the size of a frame payload

* (44+8n) <= size after stuffing <= (44+8n)+(34+8n-1)/4

Bit stuffing in CAN ensures there are always some bit transitions
- Bit stuffing adds extra bits before sending and removes them before processing
- Can add up to one bit in five, maximum 20% additional overhead

ARBITRATION PERIOD

The “dominant” values replaces the “recessive” value
A node continues if it does not see a dominant (0) when it sends a recessive (1)
Other nodes become idle:
« If a node sees a dominant (0) when it wanted to send a zero, it backs-off:
« It then repeats transmission as soon as idle (CSMA/CD)

« After arbitration one message is always correctly received

The need for bus monitoring limits the maximum propagation time

This limits the maximum allowed bus length

ARBITRATION EXAMPLE |

Consider two nodes with two message IDs sent at the same time::
* Node A sends CANI-D 15001111
* Node B sends CAN-ID 16 0010000

Note: Logic 0 is dominant

SFD B backs off

bus 0 0 0 0 0 O O O I I I 1

ERROR FRAME

When the error flag is set, an Error Frame is sent
- This is six dominant bits followed by eight recessive bits
- This is of course illegal (due to the stuffing rules)

+ All nodes recognise this as a fault condition

LOWEST ID WINS ARBITRATION

Value seen | ! !
on bus L}L_

|
Node 8 t 4 ! ! !
01000 0 0 0 1 0 0 0 8hasthebus
v i i : i i
0o 0 o frlo o1
T

i
i
i
T
i
:
L
! 1
Node 10 1 ‘ \
o1010f _ 0 0 0 | 1 [0 1 9 drops out
i i
Node 12 | |)
01100f 0
i
i
i
.
T

)
| i
1 10 drops out
]]
q]
]
]
]
]
'

0 0 1 . !
R e
1D=0010001| __ 0 0 1. | 12drops out

—_—) 17 drops out (stops competing for the bus)

High priority messages are assigned lower IDs

ARBITRATION EXAMPLE |

Consider two nodes with two message IDs:
* Node A sends 15 (00000001 11 1)
* Node B sends 16 (00000010000)

bus

Cyclic Redundancy Check (CRC)

CRC is a form of digital signature (15 bit hash)
Calculated at the sender & sent
Re-calculated at the receiver
Two values compared at receiver
Able to verify the integrity of the frame

CRC detects:

Frames that have been corrupted

Bit timing errors

Galois Field 2 Division

not used

quotient
divisor) dividend

remaih

content of
frame

generator
polynomial

ixed size (<divisor)
sed for checksum

Example simplified to generate a short (4 bit) CRC

10
11001 JTIT00I0T 0000
©11001| -

of1011

1 Bring next digit of dividend down

2 Copy msb of value to quotient

3 Insert O (if quotient 0) or divisor (if quotient 1)
4 Calculate XOR sum

5 Discard msb of value (always 0)

Hardware Example: CRC-15

X195 + x14+ x10 4+ x8 + x7 +x4 +x3 + x0

A CRC-15 requires a 15-stage shift register and X-OR gates
Clock each input bit

Then “flush” the shift register by input of 15 0’s. input

Why Modulo 2 Division?

Truth Table for Modulo-2 Division (XOR)

0®0=0
0®1=1
1®0=1
1®1=0

All CRC calculations ignore the carry

The CRC Value

10110100
ﬁ001)11100%
©11001
001011T
00000
010110
©11001
ot1111
©11001
0
0 '
01 CRC value = Remainder
| 1

CRC-15 properties

X0 Isa parity bit that detects all odd numbers of errors
Consider this CRC-15:

X715 + x14 + x10 + x8 + x7 +x4 +x3 + x0
The final code has a Hamming Distance of six

This means that five randomly distributed bit failures are detectable.
The probability of undetected multiple bit-errors is very low

Example simplified to generate a short (4 bit) CRC

Modulo 2 division
replaces addition

in BCC calculation First digit 0's are appened

must be '1' to the dividend
/ (flush bits)

Irorouvou

=

I'T10
1001) 1100
010

—

Divisor
(Generator Polynomial)

This digit must always be 0

CRC Value when there was an Error
10110111

Received CRC
replace by 0's

Bit error in frame
0100

Received CRC
*
Calculated CRC

CRC-15 and CAN

Many systems detect errors using a CRC to and discard corrupted frames.

X175 + x4 + x10+ x8 + X7 +x4 +x3 + x0

The CAN bus uses the CRC to verify each message
Each message where the received and calculated CRCs do not match
causes the CAN receiver to send an Error Frame

HOWEVER although the code has a Hamming Distance of six it is less
strong than it seems when used with CAN!

Corruption of a single stuffing bit leads to shifting of the data, effectively
inducing a 0.5 error rate, which reduces the power of CRC-15!!

Still, good enough for most applications.

Comparison of Integrity Checking Methods

Longitudinal | ¢ ciesum CRC
Parity
NMEA GPS | DMX SIP Frames CAN, USB
| XOR gﬁte per R XOR gates and
e shift regiter
Softw; XOR instruction | Add instruction | maths, lookup
Implementation + register + register table + register
De‘Fec‘uon o Poor Better Good
multiple errors

CAN-FD

The CAN-FD specification is backwards-compatible

CAN-FD assigns the reserved filed to EDL (extended data length)
A classical CAN node discards EDL frames with RTR=0 (dominant)

.. and the bus master then discovers it must use classical CAN
A CAN-FD node will decode the CAN-FD frame and reply

.. and a CAN-FD master can then use CAN-FD frames

The CAN-FD frame also contains a “reserved” bit for future expansion

[ISO 11898-1 and ISO 16845-1]

CAN-FD LARGE FRAMES

CAN-FD with 64B of data at x8 rate

Higher baud rate results in lower Eb/No
- and hence more stringent cabling/transceiver design

CAN-FLEXIBLE DATA (FD)

CAN-FD adds new formats
* Extends frame size up to 64B of data

* Increases transmission speed of data

CAN-FD FIELDS

FDF: Flexible Data Rate Format (always a recessive 1) used to indicate Flexible data frame
format usage.

EDL: Extended Data Length (always a recessive 1) for managing larger payloads and
faster bit-rates in CAN FD.

BRS: Bit Rate Switch helps determine the bit rate of a data frame.

Dominant O signifies that the arbitration rate for the CAN FD data frame up to 1Mbit/sec.
Recessive 1 signifies a higher/faster rate for CAN FD data frame up to 5Mbit/sec.

ESI: Error State Indicator

A dominant 0 indicates the error-active mode.

A recessive 1 indicates the error-passive mode.

DLC: Data Length Code is a 4-bit code in CAN FD which denote the number of data bytes

in the frame. (DLC values ranging from 1001 to 1111 are used to specify the data lengths
of 12, 16, 20, 24, 32, 48, and 64 bytes).

[ISO 11898-1 and ISO 16845-1]

@ N SUMMARE

High speed control bus
+ Supports multiple senders with arbitration

+ Supports real-time applications

Low cost chips and cable
+ High Reliability
* Plug and Play operation

Extensible
+ CANopen extends CAN for other applications
+ CAN-FD increases data rate to ~ 5-8 Mbps

CAN-FLEXIBLE DATA (FD)

Classical CAN frame

LL[ee
cano 1i-em [Elglslarar] | DATABYTE 1 cor 7-817s [5

o]

0

The start and end of a CAN-FD frame compatible with Classical CAN

bLc
CANID 11-BIT s |a-arm| | oaTABYTE 1 E

A CAN-FD frame sets the reserved bit in the classical CAN frame

CRC17-27 BITS INCLUDING STUFF-81TS AND ScT (35| £oF 7-81Ts [2

These frames carry 8B - 64B of data (makes frame longer)

A stronger CRC (17b or 22b) is used to protect the data

[I1SO 11898-1 and ISO 16845-1]

CAN-FD HIGH RATE

[ISO 11898-1 and ISO 16845-1]

Classical CAN frame with 8 B of data

CAN-FD with 8 B of data

Classical CAN frame

: CAN-FD on same scale with 64B of data
jCAN-FD with 64B of data at x8 rate

COMPARE DMX & CAN

RS-485 Async RS-485 Async
Cable 120R STP I120R STP
Direction Simplex HDX
Levels A inverse of B A inverse of B
Inter-Byte Gap Idle Idle
Senders | Any with Master
Frame SFD 92 uS Break 92 S Break
Frame Data Size 1-512B 1-512B

Frame EOF Idle Idle

COMPARE DMX & CAN

RDM

RS-485 Sync RS-485 Async RS-485 Async
120R STP 120R STP 120R STP

Any with Master

Sync pattern Packet data
Source data 00 0 0 0 0 0
NRZ encoded data
1Snllffe\d\bitl

<——Six 1 bits——> :
,<— Packet data —>

