Data Communications 1

The OSI reference model

lecturer: Gorry Fairhurst

web site: http://www.erg.abdn.ac.uk/users/gorry/eg3567

Applications Programs			
L7 Applications Layer	7-LAYER STACK		
L6 Presentation Layer			
L5 Session Layer			
L4 Transport Layer			
L3 Network Layer			
L2 Link Layer			
L1 Physical Layer			
Cabling The OSI reference model introduced the notion of a " <i>protocol layer</i> ". Layers group related <i>functions</i> .			

Each layer provides a *service* to the layers above.

The service (moving data) is providing using layer below

BEFORE OSI

Communications using proprietary protocols ties users to particular vendor products

Communications between networks difficult requiring expensive gateways

Communications were expensive but computers were more expensive

- No common framework
- Vendor-specific solutions
- Communications between different networks required complex gateways

AFTER OSI

Applications Programs

L7 Applications Layer

6 Presentation Layer

5 Session Layer

L4 Transport Layer

L3 Network Layer

L2 Link Layer

L1 Physical Layer

Cabling

The OSI reference model introduced the notion of a "*protocol layer*".

Layers group related *functions*.

Each layer provides a *service* to the layers above.

The service (moving data) is providing using the layer below

L1-3

- 3 Network Layer Network routing Network Addressing Fragmentation & Reassembly
- 2 (Data) Link Layer Data framing Link (LAN) Addressing Management Error control
- 1 Physical Layer Mechanical interface Signaling and interface control Electrical interface

Network Communication functions

L4-7

Application

functions

Middleware

- 7 Application Layer Application services Reliability Library functions
- 6 Presentation Layer Data-oriented communication tasks Transfer syntax Data transformation
- 5 Session Layer Application-oriented communication Dialogue and synchronisation control

4 Transport Layer End-to-end communication Connection management, segmentation Resequencing (ordering out-of-sequence Packets) Error control (retransmission of missing Packets) Flow control (setting the correct rate for the receiver) Congestion Control (setting the correct rate for the network layer)

BENEFITS OF OSI

Reduced complexity

Breaks network communications into smaller, simpler parts.

Standardizing interfaces

This allows multiple vendor development and support.

Facilitates modular engineering

Allows different types of hardware and software to talk to each other (interoperability).

Accelerating Evolution

Update of individual components without affecting other components

ES & 15

INTERMEDIATE SYSTEMS

Two types of systems

- Intermediate Systems
 - Network service moves IP packets around

End Systems

- Implement middleware (software libraries)
- Transport Layer that controls end-to-end communication

Intermediate Systems implement only lower layers

- Layer 1: Repeater/Hub
- Layer2: Bridge/Switch
- Layer 3: Router

L3Network Layer L2Link Layer

L1Physical Layer

НОР-ВУ-НОР

Network layer works ho-by-hop between ES

PROTOCOL EXCHANGES

Intermediate Systems (L1-L3)

Work hop by hop with their neighbour

End Systems (L4-L7)

Work end-to-end with their peer

FTP ACROSS & NETWORK

PEER-TO-PEER

SERVICE ACCESS POINTS

Each entity (instance of a protocol) sends and receives data via the *Service Access Points SAPs* using *service primitives*

THESERVICE

The communication service resembles a "pipe" along which PDU's flow

	PDU Encapsulation
N+1 Protocol Layer	G Fairhurst PDU Layer N+1 Protocol Data Unit
Protocol Contro N- Protocol Layer	I Information PCI + SDU PCI SDU PCI SDU
N-1 Protocol Layer	PCI + SDU

Subnetwork OSI Layers 1-3 G Fairburs Rôle Layer **3Network Layer** Network routing, call establishment and clearing, addressing, individual call management. 2(Data) Link Layer Data framing, data transparency, error control, management, link establishment and clearing. 1Physical Layer Mechanical interface, electrical interface, signalling and interface control.

End System Software		OSI Layers 4-7
Layer	Rôle	G Fairhurst
7Application Layer	Application serv Reliability, librar	vices: y functions.
6Presentation Layer	Data-oriented co Transfer syntax	ommunication tasks: , data transformation.
5Session Layer	Application-orie Dialogue and sy	nted communication : /nchronisation control.
4Transport Layer	End-to-end com Connection man resequencing, e	nmunication: nagement, segmentation, error control, f o v cont rd .

PDV DECAPSULATION

OSI Layer Services G Fairhurst User B User A Service Layer N+1 provided request confim response indication Service Peer Layer Protocol entity used protocol entity N Layer N-1 Protocol Data Units (PDUs)

PDV ENCAPSULATION

OSI Layer Services

G Fairhurst

OSI introduced the notion of a "**protocol layer**" providing a "**service**" Each *layer* provides a *service* to the *layers* above. The *service* (moving data) is providing using the *layer* below

IP Specifies a maximum packet size of 64 KB

Some links support only 1500 B (Ethernet)

Some (e.g. Core Internet links support 16 KB) - but not all

Fragmentation needed when PDU would be too large for service of layer below

FRAGMENTATION

L2 MAXIMUM TRANSMISSION UNIT

Ethernet (L2) specifies a MTU of 1500 B

Packets ≤ 1500 B sent without fragmentation

IP packets (L3 PDUs) >> Ethernet Frames (L2 SDUs)

Could discard over-sized PDUs (as an error)

Could fragment big packets into smaller frames

FRAGMENTATION

Fragmentation adds PCI of the Layer to identify the fragments Each sent as a separate PDU

REASSEMBLY

Reassembly is the inverse function of fragmentation Separate series of PDUs received Requires the PCI of the Layer to identify the fragments Reassembly occurs within same layer as fragmentation

Requires the receiver to queue/buffer fragments

1) Assume the equipment X is a 100 Mbps *Ethernet hub*.

(a) Using the OSI reference model, sketch the protocol stack

(b) Sketch the Ethernet MAC frame header received by the server

2) Repeat above for equipment X being an *Ethernet switch*.

3) Repeat above for equipment X being a network layer router

HUB

Applications Programs L7 Applications Layer L6 Presentation Layer L5 Session Layer L4 Transport Layer L2 Link Layer L2 Link Layer L1 Physical Layer Client x Server

MAC FRAME HEADER

ROUTER

