
TCP Congestion Control Tutorial

• Path Capacity and Windows
• Bandwidth-Delay Product (BDP)
• Slow-Start, Congestion Avoidance
• TCP flavors: Tahoe, Reno, NewReno
• Fast Retransmit/Fast Recovery
• Throughput formula
• The TCP SACK option and Scoreboard

Window-based Mechanism: 1

▪A simple protocol for reliable
communication is stop-and-wait
▪ Stop-and-wait send a data segment in a

packet and then wait for an
acknowledgment (ACK) packet.

▪ If the ACK does not arrive before the
retransmission timeout (RTO), the data
segment is retransmitted.

▪Stop-and-wait, delays sending a new
segment until an ACK is received.
▪This implies a window of 1 segment in
flight.
▪ This wastes capacity

Sender Receiver
1

2

ACK1

ACK2

Window-based Mechanism: TCP

▪All TCP data segments are
numbered.
▪A sliding window allows only a

set of “in flight” segments.
▪The congestion window

(cwnd) is the key method to
control transmission.
▪A cwnd >1 allows multiple

unacknowledged segments (3
in the example on the right).

1

Sender Receiver

2

3
ACK1

ACK2

ACK3

An example with cwnd=8

1 2 3 4 5 6 7 8 9 10

Congestion window (cwnd)

▪In this case, up to cwnd (8) segments can be sent
▪ after 8, the sender has to pause and wait to receive an ACK.

▪When the ACK for segment 1 is received,
▪ the cwnd slides right, this allows the transmission of segment 9

1 2 3 4 5 6 7 8 9 10

After ACK for packet 1

▪TCP acknowledgments are therefor cumulative:
▪ An ACK for segment 3, also acknowledges receipt of segments 1 and 2
▪ I.e. cwnd slides 3 positions, allowing three new segments to be transmitted

▪

Culmulative ACKs

1 2 3 4 5 6 7 8 9 10

cwnd

11 12 13

1 2 3 4 5 6 7 8 9 10 11 12 13

When the ACK for 3 is received:

▪TCP is actually byte-oriented
▪ ACKs report byte sequence numbers
▪ TCP can acknowledge a part of a segments transmitted
▪ To keep things simple we will continue to discuss in terms of segments

▪Sending an ACK for every segment results in many packets!

Congestion

▪A network (path) has limits to how fast it can send, i.e. the capacity
▪Trying to send more results in overload, i.e. congestion

▪Congestion needs to be avoided:
▪ In road networks cars are conserved, never lost or duplicated.
▪Road speeds adapt to the load, roads choke-up

▪ In the Internet, egress links operate at a sending rate
▪ Packets arriving on a router link need to be buffered until they can sent
▪ Buffers can fill, and then packets can be dropped at a router.
▪ The path sender is responsible for detecting loss and resending lost packets.

Sharing the Link Capacity on a Path

▪A single flow is typically unable to use all the link capacity
▪Flows sending packets at different times combine to use capacity
▪There is no congestion when packets are forwarded promptly
▪ (i.e. buffered only for a small fraction of the path RTT)
▪

Each ACK received indicates a packet has “left the path”
The ACK arrival rate indicates capacity of the “bottleneck” link
N.B. True even when ACKs return on a different path!

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K ACK ACK ACK ACK ACK

“bottleneck” link

Bottlenecks and ACKs
rate after bottleneck link

ACK rate reflects
bottleneck link rate

Overflow of the bottleneck buffer

▪ A TCP Sender sends segments (packets) on a path
▪When a router reaches capacity of the bottleneck interface, every extra received

segment is buffered before being forwarded.
▪ If router arrival rate continues to > egress rate, the queue in the buffer grows
▪ If the buffer becomes full, packets are discarded (lost).

▪ Congestion results when packets are buffered for long times

▪ Lost packets are not acknowledged by the TCP Receiver
▪ At the TCP Sender, any loss is detected by tracking received ACKs
▪ The TCP Sender needs ti reduce its rate to avoid more congestion and loss

TCP
Sender

TCP
Receiver

seg5
seg4

seg4
seg3

seg2 seg1

bottleneck
ACK

ACK ACK

Avoiding Congestion Collapse

▪ Three insights:
1. Senders need to avoid adding to congested paths (congestion control)
2. Senders need to significantly reduce under severe load (backoff)
3. Network control traffic needs to be prioritised and not dropped

When more packets are received than sent queue builds
Congestion when queue exceeds buffer

packets discarded
Known as a “drop-tail” router

▪ In the 1980’s Internet Congestion Collapse was a real problem

Congestion Control

▪ Insight: to control it sending rate, a sender needs to creating congestion

▪The key problem: How large fast should the sender transmit?
▪ Ideally, the number of outstanding segments should equal the path bandwidth delay product (BDP)

▪However, the available capacity of an Internet path cannot be known!

▪Senders there need to implement congestion control!

seg 1 seg 2 seg 3 seg 4 seg 5
time

seg 6 seg 7
Transmission

starts

BDP

ACK for 1 is
received

Slow Start

▪TCP increases cwnd :
▪ TCP starts from an initial cwnd
▪ It determines the available capacity

▪For every ACK received, the cwnd is
increased by one segment
▪ This doubles the cwnd each RTT!
▪ This results in exponential increase.

Sender Receiver

RTT 1

RTT 2

RTT 3

cw
nd

4

8

1

1

2

2

RTT

A TCP Sender uses congestion control
This controls use of capacity by dynamically increasing or decreasing the a window:
the congestion window, cwnd, according to detected congestion.

Slow Start and CA phases

▪We introduce the slow start threshold variable, ssthresh
▪ssthresh is initialised to a large value at the start of a connection
▪Congestion control uses 2 phases:
▪ Slow Start: cwnd < ssthresh, the sender exponentially increases cwnd.

• Once congestion is detected:
• cwnd/2* is saved in ssthresh (a sender knows last RTT cwnd <= capacity)
▪ ssthresh is uses as an estimate of the capacity for the next slow start increase

▪ Congestion Avoidance: cwnd>= ssthresh
• The sender slowly increases cwnd to use any extra capacity

• Together this is known as Additive-Increase Multiplicative Decrease

* Complication: Senders should use Flight_Size, rather than cwnd, to adjust SSthresh after a loss

Congestion Avoidance (CA)

▪When the cwnd > ssthresh
▪ cwnd increased by one every time an ACK

for a cwnd of segment is received
▪ Linearly increase of cwnd by one segment every

RTT

▪ Interpretation:
▪ If transmission of N segments were successful…
▪ Then try to transmit N+1 segments to see

whether the path has capacity to send more next
RTT.

Sender Receiver

4 packets were
transmitted in

this RTT

I try to transmit
5 packets

Additive-Increase Multiplicative Decrease (AIMD)

cw
nd

RTTs

Massive
Packet losses

4

8

16

12

20

24

28

32

Initial
Slow-Start

ssthresh

second
Slow-Start

Congestion
Avoidance

One packet
loss

Congestion
Avoidance

Recovery of Lost Segments

▪Segments are sent as long as there is space in the cwnd
▪As previous ACKs received, the sequence of sent segments to slide right
▪ ... until a lost segment becomes the first in the window.

21 22 23 24 25 26 27 28 29 30 31 32 33

? ? ?

▪ E.g., If segment 24 the last ACK will be for segment 23
▪ A sender does not know what happened to any later segments

TCP Tahoe (1988)

▪The sender records the cwnd before loss in the Slow Start Threshold (ssthresh)
▪ It resets the cwnd to one and starts growing cwnd
▪All unacknowledged segments are resent (it does not know better)
▪When cwnd=ssthresh, it starts linear growth (until congestion is detected)

4

8

16

12

20

24

28

32

Initial
Slow-
Start

ssthresh

Slow-
Start

Congestion
Avoidance

One packet
loss

Congestion
Avoidance

Congestion
Avoidance

reset reset reset

The congestion control adapts the rate (aka adapts ssthresh) each time it
detects congestion.

Fast Retransmit Recovery

▪ In TCP Tahoe, Loss recovery relies on a timer to detec los
▪ This is inefficient
▪ TCP has to be idle until the retransmission timer expires
▪ TCP has to retransmit any correctly received as well as lost segments

▪A better solution uses ACKs to “self-clock” the sender:
▪ When the receiver receives any out of sequence segment, it ACKs the

last received in-order segment
▪ When the sender sees 3 duplicated ACKs (dupack), the next in-order

segment to be ACK’ed is declared lost and Fast Retransmitted
▪ TCP does not need to await for a (long) RTO!!

Example of Fast Retransmit

51 52 53 54 55 56 57 58 59 60

Packet 54 is lost … but not the others in the window

51 52 53 54 55 56 57 58 59 60

61 62 63

61 62 63

The receiver sends DUPACKs for 53
for each of the later packets

Three DUPACKs trigger Fast Retransmit

TCP retransmits 54 before the RTO expiration

Fast Recovery (TCP Reno)

▪What do DUPACKs mean for a TCP sender?
▪ Three DUPACKs indicate loss, which is a congestion signal: cwnd reduced
▪ DUPACKs also indicate a segment has left the network another segment can be

sent (a principle of packet conservation)

▪The sender can “inflate” cwnd, allowing it to send a more segments
during Fast Recovery

▪When the sender discovers correct reception of all segments that were
outstanding at the time when the loss, the sender resumes transmission
using normal congestion control rules (using a corrected cwnd)

Example of Fast Recovery

51 52 53 54 55 56 57 58 59 60 61 62 63

After retransmitting 54, sender shrinks cwnd by half…

51 52 53 54 55 56 57 58 59 60 61 62 63

3 DUPACKs are received, indicating loss and I can immediately increase cwnd by 3…

51 52 53 54 55 56 57 58 59 60 61 62 63

When other DUPACKs are received, sender inflates cwnd to transmit new segments

51 52 53 54 55 56 57 58 59 60 61 62 63

TCP Reno: using cwnd

▪TCP Reno avoids slow-start at each transmission cycle

4

8

16

12

20

24

28

32

Initial
Slow-
Start

ssthresh

Slow-
Start

Congestion
Avoidance

One packet
loss

Congestion
Avoidance

Congestion
Avoidance

Number of Segments Sent

▪The previous diagram allows for a simple TCP
throughput calculation

▪In “n” RTTs number of segments sent is:
▪ SegSent = n + (n + 1) + … + 2n = 3/2 * n (n+1) ~ 3/2 * n2

▪Assuming one segment is lost and retransmitted, the
fraction of segments lost is:
▪ p = 1/SegSent = (2/3) * 1/(n (n+1)) ~ 2/(3n2)
▪ n = 2/(3p)= √(2/(3p))

Inverted-square-root Formula

▪Throughput in packet/second is:

Tput (pps) =
3/2 n(n+1)

~
n RTT

√3/2

√p RTT

▪ Throughput is inversely proportional to:
▪ The RTT
▪ The square root of loss-ratio

▪ The segment size can be used to calculate throughput in b/s

TCP New-Reno (RFC 2582)

▪TCP Reno was widely implemented, but it two problems:
▪ Too many lost segments in the same window of data substantially

increase the duration of the recovery phase
•With N losses N RTTs are needed to recover all losses

▪ Multiple cwnd reductions can occur for the same loss episode

▪TCP New-Reno partially fixed this problem in two ways:
▪ Introduced a timeout on the Fast Retransmit/ Fast Recovery
▪ No recovery unless all packet loss was counted.

Further Improvements: Selective ACKs

▪TCP New-Reno suffers from the performance limitation of TCP
Reno when multiple segments are lost in the same window of data
▪What do we do when there is a complex pattern of loss?

x x x x x x

Multiple losses detected in the same cwnd of segments

▪The TCP SACK option allows a receiver to specify the set of
segments that have been successfully received

▪A sender can then retransmit only segments that have not been
acknowledged

Improvements to AIMD

▪CC methods to increase cwnd will overshoot the bottleneck capacity.
▪Fills buffers before the smallest capacity (bottleneck) link on the path
▪Continued overshoot will eventually result in loss
▪ Triggering recovery and reduction of cwnd (a new ssthresh).

▪Can we detect buffering before loss, and reduce this overshoot???

Yes, newer methods can:

1. Measure increases in end-to-end delay and react to this!
2. Ask routers to explicitly mark packets to tell receivers they have
started to buffer packets.
3. Ensure routers don’t buffer huge numbers of packets – using
active queue management to drop or mark early.

Conclusion
• Senders start with a conservative rate, and increase their rate

• A sending rate > Path capacity results in delay and loss!

• A sender detects loss and retransmits the lost segments

• Tahoe was a simple method using a timer, but no longer used

• Instead, Reno retransmits lost packets based on ACKs:

• FR/FR uses DupACKs to improve efficiency
• The TCP SACK Option helps further

• A sender detects congestion and adjusts its rate after congestion

• Congestion Control uses a two-phase AIMD control function:

• Slow-Start and Congestion Avoidance

• There are further improvements (Cubic, BBR, PRR, TLP, etc)

• Key take away: an adaptive control loop enables efficient transmission

Spare Slides

SACK Details
▪ Implemented using two TCP options:
▪ The SACK-Permitted option sent at the start of a connection
▪ The SACK Blocks sent with ACKs when SACK is permitted

Source Port Address Destination Port Address

 Sequence Number

 Checksum Urgent Pointer

 Window Size

 Cumulative Acknowledgement Number

Kind = 4 Length = 2

TCP Header

Header
Length

SYN

SACK-Permitted

16

▪The SACK-Permitted TCP option (2 bytes) is sent in a TCP SYN
▪This indicates SACK can be used once a connection established

SACK Blocks

TCP packet
header

Set of SACK
blocks

Source Port Address Destination Port Address

 Sequence Number

 Checksum Urgent Pointer

HLEN Window Size

 Cumulative Acknowledgement Number

Kind = 1 Kind = 1 Kind = 5

 Left Edge of last Block

 Right Edge of First Block

 Left Edge of First Block

 Right Edge of last Block

Length ?

SACK Blocks

ReceiverSender
SEQ 100, 200 B

SEQ 500, 200 bytes

SEQ 300, 200 bytes

ACK 300

SEQ 700, 200 bytes

ACK 300,SACK 500-700

100-300

100-300 500-700

100-300 500-900
ACK 300, SACK 500-900

Receiver Buffer (held waiting
for other segments)

The sender uses SACK options to indicate contiguous and isolated
blocks of segments that were successfully received

SACK Rules

▪A SACK Block does not change the meaning of the ACK field

▪A SACK Block cannot be sent unless the SACK permitted option
was received

▪ If SACKs are sent, they should be included in all packets when
out-of-order data has been buffered at the receiver

▪First segment in a SACK must acknowledge the most recently
received out-of-order segment

Sender/Receiver Algorithms: RFC 3517

▪RFC 3517 specifies how to use SACK Blocks to improve
Fast Retransmit/Fast Recovery

▪SACK sender use a scoreboard
▪ The scoreboard keeps note whether each outstanding segment was

received or not.
▪ The scoreboard is updated every time a SACK Block is received

S S S S S

cwnd

SACK Scoreboard

▪A segment in the scoreboard is considered lost if at
least three SACKs do not acknowledge it.

S S S S S

▪ If a segment in the scoreboard is not marked as lost, it is
considered still in flight and it is not retransmitted yet.
▪ In this example the 5 orange segments are considered still in flight

▪TCP follows the same rules as New-Reno to update cwnd,
but segments in flight are indicated by the scoreboard

Lost segments Not enough SACKs

